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Abstract

In this paper, a q-difference version of the ε-algorithm is proposed. By using
determinant identities the solutions of an initial value problem thus arisen can
be expressed as ratios of Hankel determinants. It is shown that in numerical
analysis this algorithm can be used to compute the approximation limt→∞ f (t),
and in the field of integrable systems it could be viewed as the q-difference
version of the modified Toda molecule equation.

PACS number: 02.30.Ik

1. Introduction

Recently, it has been shown that integrable systems have close connections with numerical
algorithms. This notion brings a fresh look in the research of both fields and much interesting
work has been done subsequently. For example, one step of the QR algorithm is equivalent to
the time evolution of the finite nonperiodic Toda lattice [1]. The ε-algorithm is nothing but the
fully discrete potential KdV equation [2]. The η-algorithm and ρ-algorithm are considered
to be the fully discrete KdV and fully discrete cylindrical KdV equations, respectively [3].
The discrete Lotka–Volterra system has applications in numerical algorithms for computing
singular values [4–6].

In this short paper, we construct a q-difference version of the ε-algorithm for convergence
acceleration. Let {Sn} be a sequence converging to some limit S. Sometimes the convergence
of the sequence is slow, so one turns to construct convergence acceleration algorithms which
transform the original sequence to a new one. We say that the transformation T : {Sn} → {Tn}
accelerates the convergence of the sequence {Sn} if

lim
t→∞

Tn − S

Sn − S
= 0.
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In the literature, many convergence acceleration transformations for sequences have been
constructed [7]. One of them is the famous Shank’s transformation [8], which is the general
case of the well-known Aitken’s �2 process. In 1956, Wynn derived a recursive procedure
to compute the new sequences that Shank’s transformation produces. This is the famous
ε-algorithm [9] and is given by

ε
(n)
k+1 = ε

(n+1)
k−1 +

1

ε
(n+1)
k − ε

(n)
k

, (1)

with initial conditions

ε
(n)
−1 = 0, ε

(n)
0 = Sn.

Wynn obtained in [10] again the confluent form of the ε-algorithm:

εk+1(t) = εk−1(t) +
1

ε′
k(t)

, (2)

with initial conditions

ε−1(t) = 0, ε0(t) = f (t).

The purpose of this algorithm is to compute the approximation limt→∞ f (t). Setting
Nk(t) = ε′

k(t)ε
′
k+1(t), this algorithm reduces to the Bäcklund transformation of the discrete

Toda molecule equation [11]

N ′
k(t) = Nk(t)[Nk−1(t) − Nk+1(t)],

which is also called the Lotka–Volterra lattice.
In this paper, first we propose the q-difference version of the ε-algorithm. Then we

study an initial value problem with this algorithm and also the kernel and integrability of this
transformation.

This paper is organized as follows. In section 2, we will give the q-difference form
of the ε-algorithm. In section 3, we derive the solution to an initial value problem with this
algorithm. In section 4, we study the kernel of the q-difference ε-algorithm and the relationship
to integrable systems. In section 5, examples of application of this algorithm are presented.
Section 6 is devoted to conclusions.

2. Derivation of the q-difference ε-algorithm

In this section, we show how the q-difference ε-algorithm is derived and also give its property.
Consider the ε-algorithm (1). Set t = (qα)nx0, replace ε

(n)
k by ε2k(t), and also ε

(n)
2k+1 by

ε2k+1(t)/((q − 1)t), where q > 1, x0 > 0, and α > 0 are constants. (These assumptions will
be kept throughout this paper.) Under the assumptions, t → ∞ when n → ∞. Then we get
the q-difference ε-algorithm

εk+1(t) = εk−1(q
αt) +

1

δqα εk(t)
, (3)

where the q-difference operator δqα is defined by [12]

δqαf (t) = f (qαt) − f (t)

(q − 1)t
. (4)

Note that when α = 1 and q → 1, the above algorithm reduces to the confluent ε-algorithm
(2). Furthermore, this algorithm has the following property.
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Theorem 1. Let {εk(t)} be constructed by relation (3) from the initial condition

ε−1(t) = 0, ε0(t) = f (t),

and {ε̄k(t)} constructed by the same relation from the initial condition

ε̄−1(t) = 0, ε̄0(t) = af (t) + b,

then

ε̄2k(t) = aε2k(t) + b, ε̄2k+1(t) = ε2k+1(t)

a
,

where a �= 0 and b are constants.

Proof. The above results can easily be proved by induction from the recursion relation (3).
�

3. Determinant solution of an initial value problem with the q-difference ε-algorithm

Define a sequence of Hankel determinants

H
(n)
k (t) ≡

∣∣∣∣∣∣∣∣∣∣

δn
qαf (t) δn+1

qα f (t) · · · δn+k−1
qα f (t)

δn+1
qα f (t) δn+2

qα f (t) · · · δn+k
qα f (t)

...
...

...

δn+k−1
qα f (t) δn+k

qα f (t) · · · δn+2k−2
qα f (t)

∣∣∣∣∣∣∣∣∣∣
, k = 1, 2, . . . ,

H
(n)
−1 ≡ 0, H

(n)
0 ≡ 1, n = 1, 2, . . . .

Then we have the following result.

Theorem 2. Given the initial values of the q-difference algorithm

ε−1(t) = 0, ε0(t) = f (t), (5)

then {εk(t)} constructed from relation (3) have the explicit formulae

ε2k−1(t) = H
(3)
k−1(t)

H
(1)
k (t)

, ε2k(t) = H
(0)
k+1(t)

H
(2)
k (t)

.

Proof. First, we prove the following bilinear equations:

H
(n+2)
k (qαt)δqαH

(n)
k+1(t) − H

(n)
k+1(q

αt)δα
q H

(n+2)
k (t) = H

(n+1)
k (qαt)H

(n+1)
k+1 (t), (6)

H
(n)
k+1(t)H

(n+2)
k−1 (qαt) = H

(n+2)
k (t)Hn

k (qαt) − H
(n+1)
k (t)H

(n+1)
k (qαt). (7)

Let D be some determinant,
[
i1 i2 ··· in
j1 j2 ··· jn

]
denotes the determinant with the i1 < i2 < · · · < inth

rows and j1 < j2 < · · · < jnth columns removed from D. We start with defining

D ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

δn
qαf (qαt) · · · δn+k

qα f (qαt) 0
...

...
...

δn+k−1
qα f (qαt) · · · δn+2k−1

qα f (qαt) 0

δn+k
qα f (qαt) · · · δn+2k

qα f (qαt) 1

δn+k+1
qα f (t) · · · δn+2k+1

qα f (t) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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From the definition of δqαf (t) in (4), we have

D = −δqαH
(n)
k+1(t).

In addition, we can obtain the relations

D

[
1 k + 2
1 k + 2

]
= H

(n+2)
k (qαt), D

[
k + 2
k + 2

]
= H

(n)
k+1(q

αt),

D

[
1
1

]
= −δqαH

(n+2)
k (t), D

[
1

k + 2

]
= H

(n+1)
k+1 (t),

D

[
k + 2

1

]
= H

(n+1)
k (qαt).

From the above results, we see that the bilinear equation (6) is equivalent to the Jacobi identity

DD

[
1 k + 2
1 k + 2

]
= D

[
1
1

]
D

[
k + 2
k + 2

]
− D

[
1

k + 2

]
D

[
k + 2

1

]
.

�

Next we prove the other determinant identity (7). Define

D̄ ≡

∣∣∣∣∣∣∣∣∣∣

δn
qαf (qαt) · · · δn+k−1

qα f (qαt) δn+k
qα f (qαt)

...
...

...

δn+k−1
qα f (qαt) · · · δn+2k−2

qα f (qαt) δn+2k−1
qα f (qαt)

δn+k
qα f (t) · · · δn+2k−1

qα f (t) δn+2k
qα f (t)

∣∣∣∣∣∣∣∣∣∣
,

then we have the relations

D̄ = H
(n)
k+1(t), D̄

[
1 k + 1
1 k + 1

]
= H

(n+2)
k−1 (qαt),

D̄

[
1
1

]
= H

(n+2)
k (t), D̄

[
k + 1
k + 1

]
= H

(n)
k (qαt),

D̄

[
1

k + 1

]
= H

(n+1)
k (t), D̄

[
k + 1

1

]
= H

(n+1)
k (qαt),

from which we see that the bilinear equation (7) is nothing but the Jacobi identity

D̄D̄

[
1 k + 1
1 k + 1

]
= D̄

[
1
1

]
D̄

[
k + 1
k + 1

]
− D̄

[
1

k + 1

]
D̄

[
k + 1

1

]
.

Now we consider equation (3). When k is odd, by the bilinear identity (7) we have

ε2k(t) − ε2k−2(q
αt) = H

(0)
k+1(t)

H
(2)
k (t)

− H
(0)
k (qαt)

H
(2)
k−1(q

αt)

= H
(0)
k+1(t)H

(2)
k−1(q

αt) − H
(2)
k (t)H

(0)
k (qαt)

H
(2)
k (t)H

(2)
k−1(q

αt)

= − H
(1)
k (t)H

(1)
k (qαt)

H
(2)
k (t)H

(2)
k−1(q

αt)
.
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On the other hand, by identity (6) we have

δqα ε2k−1(t) = δqα

H
(3)
k−1(t)

H
(1)
k (t)

= H
(1)
k (qαt)δqαH

(3)
k−1(t) − H

(3)
k−1(q

αt)δqαH
(1)
k (t)

H
(1)
k (t)H

(1)
k (qαt)

= −H
(2)
k (t)H

(2)
k−1(q

αt)

H
(1)
k (t)H

(1)
k (qαt)

.

Therefore we have proved equation (3) for the odd subscripts. Equation (3) for the even
subscripts can be proved in a similar way.

4. Kernel of the q-difference ε-algorithm and the relationship to integrable systems

In this section, we give the kernel of this transformation and show the relationship to integrable
systems.

From the expression of ε2k(t) in theorem 2, we derive the kernel of the q-difference
ε-algorithm.

Theorem 3. Let {εk(t)} be derived by the q-difference ε-algorithm with initial condition (5).
Assume T is a constant. Then a necessary and sufficient condition that ε2k(t) = S for all
t � T is given by

f (t) = S + a1δqαf (t) + a2δ
2
qαf (t) + · · · + akδ

k
qαf (t), (8)

where ai, i = 1, . . . , k are constants, or equivalently,

f (t) = S + b1δqαf (t) + b2δqαf (qαt) + · · · + bkδqαf ((qα)k−1t), (9)

where bi, i = 1, . . . , k are functions of t which can be obtained from the equivalent expressions
of f (t) as in (8) and (9).

Proof. The sufficient condition is obvious so that we just need to prove the necessary condition.
If ∀ t � T , ε2k(t) = S, by theorem 2 it is equivalent to

H
(0)
k+1(t) = SH

(2)
k (t).

After rearranging, we arrive at

H
(0)
k+1(t) − SH

(2)
k (t) =

∣∣∣∣∣∣∣∣∣∣

f (t) − S δqαf (t) · · · δk
qαf (t)

δqαf (t) δ2
qαf (t) · · · δk+1

qα f (t)

...
...

...

δk
qαf (t) δk+1

qα f (t) · · · δ2k
qαf (t)

∣∣∣∣∣∣∣∣∣∣
= 0,

which is equal to⎧⎪⎪⎨
⎪⎪⎩

c0(f (t) − S) + c1δqαf (t) + · · · + ckδ
k
qαf (t) = 0

c0δqαf (t) + c1δ
2
qαf (t) + · · · + ckδ

k+1
qα f (t) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c0δ

k
qαf (t) + c1δ

k+1
qα f (t) + · · · + ckδ

2k
qαf (t) = 0

where ci, i = 0, 1, . . . , k are some constants. This equation is equivalent to equation (8).
Hence the proof is completed. �
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Next we consider the relationship of the q-difference ε-algorithm with integrable systems.
Setting uk(t) = δqα εk(t), from equation (3) we have

δqαuk(t) = uk(t)uk(q
αt)[uk−1(q

αt) − uk+1(t)]. (10)

On the other hand, considering the confluent ε-algorithm (2), set vk(t) = ε′
k(t), this algorithm

reduces to

v′
k(t) = v2

k (t)[vk−1(t) − vk+1(t)], (11)

which is the modified Toda molecule equation. So we say that equation (10) is the q-difference
version of the modified Toda molecule equation (11). From theorems 2 and 3, {uk(t)}k can be
expressed as

u2k−1(t) = −H
(2)
k−1(q

αt)H
(2)
k (t)

H
(1)
k (qαt)H

(1)
k (t)

,

u2k(t) = H
(1)
k (qαt)H

(1)
k+1(t)

H
(2)
k (qαt)H

(2)
k (t)

.

5. Convergence acceleration examples

In this section, we apply the q-difference ε-algorithm to accelerate the convergence of function.

Example 1. Set f (t) = 1
eqα (t)

, where eqα (t) is defined by [13]

eqα (t) =
∞∑

k=0

t k

[k]!
,

and

[n] = 1 − (qα)n

1 − q
, [n]! = [1][2] · · · [n], [0]! = 1.

From the recurrence equation (3) with initial conditions

ε−1(t) = 0, ε0(t) = f (t),

it can be computed by induction that

ε2k(t) =
(

1 − 1

qα

)(
1 − 1

q2α

)
· · ·

(
1 − 1

qkα

)
1

eqα (qkαt)

ε2k+1(t) = − qαq2α · · · qkα

(qα − 1)(q2α − 1) · · · (qkα − 1)
eqα (q(k+1)αt).

From above expressions, we see that

lim
t→∞

ε2k(t)

f (t)
= 0,

ε2k+2(t)

ε2k(t)
=

(
1 − 1

q(k+1)α

)
eqα (qkαt)

eqα (q(k+1)αt)
,

lim
t→∞

ε2k+2(t)

ε2k(t)
= 0.

6
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For t > 0

lim
k→∞

ε2k+2(t)

ε2k(t)
= 0.

From the above results, we see that ε2k(t) converges faster than f (t) and also ε2k+2(t) converges
faster than ε2k(t).

Example 2. Set f (t) = t/et . With different choices of q and α, the corresponding numerical
results are presented.

Case 1. Let q = 2, α = 2.

t f (t) ε2(t) ε4(t)

1 0.367 879 4412 0.053 733 309 34 1.266 017 472 × 10−6

2 0.270 670 5664 0.002 011 091 840 2.849 437 249 × 10−13

3 0.149 361 2051 0.000 055 295 635 01 4.809 928 781 × 10−20

4 0.073 262 555 56 0.000 001 350 419 331 7.217 149 007 × 10−27

Case 2. Let q = 1.2, α = 2.

t f (t) ε2(t) ε4(t)

1 0.367 879 4412 0.392 325 1632 0.016 821 489
2 0.270 670 5664 0.010 471 0148 0.007 017 034 12
3 0.149 361 2051 0.009 960 654 55 0.001 156 312 864
4 0.073 262 555 56 0.004 148 954 51 0.000 259 707 9314

Case 3. Let q = 2, α = 1.

t f (t) ε2(t) ε4(t)

1 0.367 879 4412 6.688 107 100 0.021 627 323 72
2 0.270 670 5664 0.030 291 444 60 9.776 275 778 × 10−4

3 0.149 361 2051 0.007 042 314 565 2.754 531 975 × 10−5

4 0.073 262 555 56 0.001 316 780 228 6.748 704 838 × 10−7

Example 3. Set f (t) = 1 − t sin(1/t). Similarly, the numerical results with different choices
of q and α are presented.

Case 1. Let q = 2, α = 3.

t f (t) ε2(t) ε4(t)

5 0.006 653 3460 9.132 145 490 × 10−5 1.404 879 816 × 10−6

10 0.001 665 8335 2.283 100 115 × 10−5 3.512 961 827 × 10−7

20 0.000 416 6146 5.707 757 162 × 10−6 8.787 752 584 × 10−8

40 0.000 104 1636 1.426 833 054 × 10−6 2.184 016 611 × 10−8

7
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Case 2. Let q = 1.5, α = 3.

t f (t) ε2(t) ε4(t)

5 0.006 653 3460 4.227 805 414 × 10−4 3.412 685 758 × 10−5

10 0.001 665 8335 1.057 101 053 × 10−4 8.531 769 446 × 10−6

20 0.000 416 6146 2.642 887 902 × 10−5 2.133 021 198 × 10−6

40 0.000 104 1636 6.607 220 604 × 10−6 5.332 189 098 × 10−7

Case 3. Let q = 2, α = 1.

t f (t) ε2(t) ε4(t)

5 0.006 653 3460 9.518 026 350 × 10−4 1.904 448 703 × 10−4

10 0.001 665 8335 2.380 592 242 × 10−4 4.761 721 803 × 10−5

15 0.000 416 6146 5.952 170 194 × 10−5 1.190 466 159 × 10−5

40 0.000 104 1636 1.488 085 714 × 10−5 2.976 123 519 × 10−6

From the above results, we see that the convergence acceleration speed becomes larger
when q or α increases.

6. Conclusions

In this paper, the q-difference form of the ε-algorithm is constructed. The kernel of the
transformation, its recursive equation, and the corresponding solutions are given. In the
context of soliton theory, the q-difference version of the ε-algorithm can be considered as
the q-difference modified Toda molecule equation. From the viewpoint of numerical analysis,
this algorithm can be applied to compute limt→∞ f (t). From the examples of the algorithm’s
application we see that q and α play an important role in the convergence acceleration speed.
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